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Abstract
In this paper, we propose a method of enciphering quantum states of two-state
systems (qubits) for sending them in secrecy without entangled qubits shared
by two legitimate users (Alice and Bob). This method has the following two
properties. First, even if an eavesdropper (Eve) steals qubits, she can extract
information from them with only a certain probability at most. Second, Alice
and Bob can confirm that the qubits are transmitted between them correctly by
measuring a signature. If Eve measuresm qubits one by one from n enciphered
qubits and sends alternative ones (the intercept/resend attack), the probability
that Alice and Bob do not notice Eve’s action is equal to

(
3
4

)m
or less. Passwords

for decryption and the signature are given by classical binary strings and they are
disclosed through a public channel. Enciphering classical information by this
method is equivalent to the one-time pad method with distributing a classical key
(random binary string) by the BB84 protocol. If Eve takes away qubits, Alice
and Bob lose the original quantum information. If we apply our method to a
state in iteration, Eve’s success probability decreases exponentially. We cannot
examine security against the case that Eve makes an attack using entanglement.
This remains to be solved in the future.

PACS numbers: 0367, 4265, 0365B, 4250D

1. Introduction

Since considerable progress has been made in quantum information and computation theory,
many researchers have, through quantum mechanics [1], been trying to realize a level of
information processing that we have never had previously. At the same time, researchers have
been studying the application of the uncertainty principle, the quantum no-cloning theorem and
entanglement between quantum systems to cryptography [2]. The BB84 protocol is considered
to be an effective method for key distribution. By combining it with the one-time pad method,

3 Present address: Centre for Quantum Computation, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK.
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we obtain a highly secure cryptography [3–5]. On the other hand, quantum teleportation
is considered to be an excellent method for sending arbitrary quantum states between two
parties [6, 7].

The BB84 protocol is used for the secure distribution of a classical key (binary string)
to two legitimate users (Alice and Bob). Choosing a basis vector at random from four basis
vectors, the rectilinear basis {|0〉, |1〉} and the circular basis {(1/√2)(|0〉 ± |1〉)}, as a state of
a photon (a two-state system or a qubit), Alice sends it to Bob. Bob measures a transmitted
photon in an orthonormal basis that he chooses from two bases (rectilinear and circular) at
random and independently of Alice.

Not being consistent with each other, the rectilinear basis and the circular basis are called
conjugate bases. The result of a measurement with an incorrect basis is random. If an
eavesdropper (Eve) steals a photon from the channel, measures it in a basis chosen at random,
and sends an alternative one, Alice and Bob will find an inconsistency with a probability of 1

4
or more and notice Eve’s eavesdropping. In this way, by using the uncertainty principle, the
BB84 protocol reveals Eve’s illegal act.

Ekert proposed another protocol for distributing a classical key by transmitting pairs of
qubits in EPR states, |�−〉 = (1/

√
2)(|01〉 − |10〉), apart to Alice and Bob from a source [8].

They detect Eve by Bell’s theorem. Considering a simplified protocol of Ekert, Bennett et al
showed it was equivalent to BB84 [9]. From these successive works, it has been recognized that
we do not need to use entanglement to distribute a classical key using quantum mechanics. (But,
by combining the entanglement purification protocol with Ekert’s protocol, we can distribute
a classical key with high secrecy [10].)

Quantum teleportation is used for transmitting an arbitrary state from Alice to Bob. They
share an EPR-pair of qubits beforehand. Alice carries out the Bell-measurement on both
a one-qubit state |ψ〉 that she wants to send and her qubit of the EPR-pair. Receiving
a result of her measurement, Bob can construct |ψ〉 from his qubit of the EPR-pair. A
characteristic of this method is that classical information and non-classical information of
|ψ〉 are divided perfectly and only the classical information is sent through the public channel.
If they share the EPR-pair correctly, Eve can neither eavesdrop on the state nor destroy it in
principle.

These methods are related to the quantum no-cloning theorem. It tells us there is no
unitary transformation that makes accurate clones of arbitrary quantum states [2]. In the BB84
protocol, it gives an effect as follows. Not knowing which basis is chosen for a qubit (photon)
that she extracts from the quantum channel, rectilinear or circular, Eve cannot make a clone
of the qubit and keep it. What she can do is only to measure the qubit in a proper basis and
send an alternative one that depends on the result of the measurement to Bob. In the quantum
teleportation, the following point is important. Because Alice can neither measure |ψ〉 without
disturbance nor make an accurate clone of it, she cannot extract information from |ψ〉 at all.
During the whole process, Alice and Bob have no knowledge about |ψ〉.

In quantum teleportation, Alice and Bob have to share an EPR-pair of qubits beforehand.
After being emitted by a source, this pair flies towards them apart through a quantum channel.
Therefore, for example, if Eve takes away the qubit that Bob is supposed to have and sends
an alternative one to him, she succeeds in eavesdropping. To avoid such a problem, Alice and
Bob need to share a lot of EPR-pairs and to purify them [10].

In this paper, we consider a method for enciphering arbitrary quantum states for sending
them in secrecy without entangled qubits shared by Alice and Bob beforehand. In our method,
there are two points as follows (see figure 3 in section 3).

First, even if Eve takes away qubits, she can extract quantum information from them with
only a certain probability at most. (If Eve measures m qubits one by one from n enciphered
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qubits and sends alternative ones, the probability that Alice and Bob do not notice Eve’s act
is equal to

(
3
4

)m
or less. We assume Eve makes only the intercept/resend attack [4].) Alice

applies a unitary operator Ui which is chosen at random from a set of operators M = {Uj }
to an arbitrary n-qubit state |�〉 that she wants to send in secrecy. The subscript i of Ui is
a password for decryption. Not knowing which operator is chosen from M, Eve regards the
enciphered state as a mixed state of Uj |�〉 for all Uj ∈ M with equal probability. If Alice
prepares M so that the density operator of the mixed state may be in proportion to the identity
operator I, Eve cannot extract the information of |�〉 at all without the password i. The
reason for this is that even if Eve puts auxiliary qubits on the density operator ρ = (1/2n)I,
applies unitary transformations to it, or measures it, she cannot extract |�〉. After confirming
that the quantum state is transmitted correctly, Alice releases the password i in our protocol.
Therefore, to extract information from |�〉, Eve has to eavesdrop without disturbing Alice and
Bob’s certification process. (This technique has been also discussed by two groups, Boykin
and Roychowdhury, and Mosca et al [11]. They have shown the following result. When we
define M as a set of tensor products of the Pauli matrices, the number of the operators {Ui}
becomes minimum and the subscript i is represented by a 2n-bit string.)

Second, Alice and Bob can confirm that a quantum state received by Bob is a genuine one
sent by Alice. Not having knowledge about the n-qubit state |�〉Q at all, they do not notice Eve
replace the genuine qubits with alternative ones. Therefore, they need to confirm that the qubits
Bob receives are genuine. (It seems like authentication of the identity of a correspondent on
networks.) In our method, after putting an n-qubit state |a〉S (a ∈ {0, 1}n) that represents her
signature onUQ

i |�〉Q, Alice makes entanglement between qubits of each pair in the systemQ

and S. Here, we call the quantum system which represents the transmitted informationQ and
the quantum system which represents the signature S. Then, to forbid Eve for making clones
of qubits, Alice applies an operator chosen at random from L = {I, H, σx,Hσx} to each
qubit, whereH is called the Hadamard transformation and it causes |0〉 → (1/

√
2)(|0〉 + |1〉),

|1〉 → (1/
√

2)(|0〉−|1〉), andσx is one of the Pauli matrices and it causes |0〉 → |1〉, |1〉 → |0〉.
Hence, quantum information of each qubit is encoded in a basis chosen at random from two
conjugate bases (rectilinear and circular). Therefore, if Eve does anything on the qubits, Alice
and Bob can find an inconsistency and detect Eve with at least a certain probability. This is
essentially the same technique used in BB84. In our method, certification of a correspondent
and detection of Eve are done at the same time. The second password for decryption is which
operators are chosen from L.

Because the passwords and the signature represented by classical binary strings are
transmitted by the public channel, Eve also knows them. If |�〉Q represents classical
information (a product state of |0〉 and |1〉), our protocol is equivalent to the one-time pad
method with classical key distribution by BB84.

If Alice and Bob apply our enciphering method to a state in iteration, the probability
that Eve gets quantum information with a fidelity of 1 decreases exponentially. (If they
encipher a one-qubit state with N qubits, the probability is given by

(
3
4

)N/2
.) We can

regard it as a privacy amplification process. We cannot examine security against the case
that Eve makes an attack with using entanglement. This remains to be solved in the
future.

This paper is organized as follows. In section 2, we explain how Alice and Bob forbid
Eve from extracting the original quantum information and how they confirm that the qubits
are transmitted correctly. In section 3, we explain the whole protocol and discuss how Bob
confirms that he receives qubits. In section 4, we discuss security of our protocol against Eve’s
intercept/resend attack on each qubit. In section 5, we discuss privacy amplification process.
In section 6, we give a brief discussion.
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2. Enciphering quantum states

In this section, we explain how Alice and Bob forbid Eve to extract the original quantum
information and how they confirm the qubits are transmitted correctly.

First, we consider transforming an arbitrary quantum state so that Eve cannot recover an
original quantum state. For simplicity, we consider an arbitrary one-qubit state for a while
and we describe its density operator as ρ defined on a two-dimensional Hilbert space H2. We
assume Alice wants to send ρ to Bob in secrecy. She does not know ρ at all, because her
partial measurement destroys it.

Alice prepares a set of operators,

M = {σj : j = 0, x, y, z} (1)

where σ0 = I (the identity operator) and {σx, σy, σz} are the Pauli matrices. Taking

|0〉 =
(

1
0

)
|1〉 =

(
0
1

)
(2)

for an orthonormal basis, we write them as

I =
(

1 0
0 1

)
σx =

(
0 1
1 0

)

σy =
(

0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

(3)

M may be disclosed in public. Choosing an operator σi from M at random, Alice carries out
the following unitary transformation:

ρ → σiρσ
†
i . (4)

She keeps the subscript i secret as a password and never tells it to anyone. Because the
subscript takes a value from {0, x, y, z}, the password can be represented by two-bit classical
information.

Not knowing which transformation Alice applies to the qubit, Eve has to regard the state
as

ρ ′ = 1
4

∑
j=0,x,y,z

σjρσ
†
j . (5)

Generally, the density operator ρ satisfies ρ† = ρ, Tr ρ = 1, 0 � λ1 � 1, 0 � λ2 � 1 and
λ1 + λ2 = 1, where λ1, λ2 are eigenvalues of ρ. Hence, we can describe an arbitrary ρ as

ρ = 1
2 (I + a · σ) (6)

where a = (a1, a2, a3) is a three-component real vector and 0 �
∑3

k=1 a
2
k � 1. Because

ρ ′ = 1
2I + 1

8

∑
j=0,x,y,z

a · σjσσ †
j (7)

and

σjσkσj =
{
σk j = 0 or j = k

−σk j �= k and j, k ∈ {x, y, z}
(8)

there is no contribution from the second term of (7). We obtain

ρ ′ = 1
2I. (9)
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Therefore, even if Eve takes away ρ ′, she cannot extract information from it at all, because she
does not know the password i.

An arbitrary n-qubit density operator ρn is given by

ρn = 1

2n

(
I +

∑
k∈{0,x,y,z}n,k �=(0,...,0)

akUk

)
(10)

where

Uk = σk1 ⊗ · · · ⊗ σkn (11)

and ak (k ∈ {0, x, y, z}n, k �= (0, . . . , 0)) is real. (In (10), I represents the identity operator
for n-qubit states.) Choosing an operator Ui from

Mn = {Uk : Uk = σk1 ⊗ · · · ⊗ σkn,k ∈ {0, x, y, z}n} (12)

at random, Alice applies it to ρn for encryption as ρn → UiρnU
†
i . If Eve takes away the

density operator given by

ρ ′
n = 1

4n
∑

j∈{0,x,y,z}n
UjρnU

†
j

= 1

2n
I +

1

4n · 2n
∑

j,k∈{0,x,y,z}n,k �=(0,...,0)
akUjUkU

†
j

= 1

2n
I (13)

she cannot extract information from ρ ′
n at all. Even if she puts auxiliary systems on ρ ′

n, applies
unitary transformations to it, or carries out measurements, she cannot obtain ρn. The password
of i is given by a 2n-bit string. (This technique is also discussed by two groups, Boykin and
Roychowdhury, and Mosca et al as mentioned in section 1 [11].)

Next, we explain how Alice and Bob confirm that the qubits are transmitted between them
correctly. If Eve takes away ρ ′

n and sends an alternative state ρ̃n to Bob, he carries out the
inverse operation on the state that he receives as ρ̃n → Uiρ̃nU

†
i . Not having knowledge about

the original ρn at all, Alice and Bob do not notice that what Bob gets is a fake.
To avoid this problem, they put a signature on ρn. Reading it, they can confirm that Bob

receives the state transmitted from Alice correctly. It is important that Eve cannot change the
signature. For simplicity, we describe the state as a ket vector ∀|�〉Q ∈ Hn

2 instead of the
density operator ρn for a while. If the n-qubit state is given by a mixed state, we can give
a similar discussion. We call the system that represents the quantum information Q and the
system that represents the signature S.

Preparing an n-bit random string ∀a = (a1, . . . , an) ∈ {0, 1}n as her signature, Alice
attaches a qubit |ak〉S to the kth qubit of

U
Q
i |�〉Q =

∑
x∈{0,1}n

cx|x1〉 · · · |xn〉 ∈ Hn
2 . (14)

Applying the controlled-NOT (C-NOT) gate to the kth pair as in figure 1, she obtains

|xk〉Q|ak〉S → |xk〉Q|ak ⊕ xk mod 2〉S for k = 1, . . . , n. (15)

Choosing LQk,1, L
S
k,2 ∈ L = {I, H, σx,Hσx} at random, she applies them to the qubits of the

pair, where

H = 1√
2

(
1 1
1 −1

)
. (16)
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Figure 1. The second encryption by Alice.

 

Figure 2. Typical quantum gates.

Alice repeats this operation on the k = 1, . . . , nth qubit, and we write the whole transformation
as VQS

α . α, where represents which operators are chosen from L. The second password α is
given by a classical 4n-bit string.

We often describe successive operations on qubits as a network such as figure 1. A
horizontal line represents a qubit and time proceeds from left to right. Figure 2 shows examples
of unitary transformations applied to qubits. Figures 2(a) and (b) represent the C-NOT gate
and σx , respectively [12].

The operations that we have discussed are summarized as follows:

|�〉Q → U
Q
i |�〉Q (first password i)

→ |a〉S ⊗ U
Q
i |�〉Q (signature a)

→ VQS
α (|a〉S ⊗ U

Q
i |�〉Q) (second password α).

(17)

Double encryption prevents Eve from using |a〉S maliciously. If VQS
α is not applied to the state,

Eve may take away all of the qubits, keep UQ
i |�〉Q and send a fake version of |a〉S ⊗ |�̃〉Q to

Bob.
If Eve does anything to the kth qubit of Q, the signature of |ak〉S is destroyed and Bob’s

probability of failure in the certification process is bounded from below. This is caused by
the fact that conjugate bases chosen at random represent the systems Q and S and there is
entanglement between Q and S. If she does anything to the kth qubit of S, we can obtain
a similar result. We estimate the probability that Alice and Bob notice Eve’s illegal act in
section 4.

3. The protocol for secure transmission

We consider a protocol for transmitting an arbitrary quantum state ∀|�〉Q ∈ Hn
2 from Alice to

Bob in secrecy against Eve’s eavesdropping by using the encryption method discussed in the
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Figure 3. Secure transmission between Alice and Bob.

Figure 4. Eve’s strategy for eavesdropping.

previous section. Alice and Bob do not have knowledge about |�〉Q at all. Both of them can
use the following two channels.

• The classical channel. It transmits classical binary strings in public. Eve can make
accurate copies of them, but she cannot alter them.

• The quantum channel. It transmits sequences of qubits (quantum information). Eve can
interact with them, but she cannot make accurate copies of them.

Alice sends qubits to Bob according to the following protocol (see figure 3).

(a) Alice sends |�crypt〉 ≡ VQS
α (|a〉S ⊗ U

Q
i |�〉Q) of 2n qubits to Bob through the quantum

channel.
(b) Receiving 2n qubits, Bob breaks off the quantum channel and reports arrival of them to

Alice through the classical channel.
(c) Receiving the report from Bob, Alice tells Bob what transformation VQS

α is through the
classical channel. (She discloses the 4n-bit password α.)

(d) Applying VQS†
α to the state that he has received and measuring the signature, Bob tells

Alice a result of the measurement (an n-bit string) through the classical channel.
(e) Receiving then-bit string from Bob, Alice examines whether it coincides with the signature

a or not. If it coincides with her original signature, she tells Bob what transformation
U
Q
i is through the classical channel. (She discloses the 2n-bit password i.) If it does not

coincide, she concludes Eve has eavesdropped on qubits and stops the protocol.
(f) Bob applies UQ†

i to the state that he has and obtains the original state |�〉Q.

In this protocol, it is important that Bob confirms the arrival of 2n qubits (|�crypt〉 or
Eve’s fake) and breaks off the quantum channel at the second step. To understand the reason
for this, we assume the following case (see figure 4). Although |�crypt〉 is still halfway on
the channel, Bob reports the arrival of qubits to Alice by mistake, and she discloses VQS

α

through the classical channel. Eve may take away |�crypt〉, apply VQS†
α to it, and obtain

|a〉S ⊗Ui|�〉Q before Bob receives qubits. Eve can keep Ui|�〉Q, combine a false state |�̃〉Q
with |a〉S and send VQS

α (|a〉S ⊗ |�̃〉Q) to Bob. If the quantum channel is still open, Bob
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Figure 5. The photon counting measurement with nonlinear optical devices.

receives VQS
α (|a〉S ⊗ |�̃〉Q). Because the signature is correct, Alice and Bob cannot notice

Eve’s illegal act. Alice discloses UQ
i in public and finally Eve gets |�〉Q.

To avoid this problem, Bob needs to verify that a batch of qubits (|�crypt〉 or Eve’s fake)
has arrived. For example, it is good for Bob to use the following method.

We construct a qubit from a pair of optical paths (modes) that are represented by x and y
in figure 5(c) [13]. We describe a state where there is no photon on a mode as |0〉 and a state
where there is a photon on a mode as |1〉. Writing a state where no photon is on the mode
x and one photon is on the mode y as |0〉x ⊗ |1〉y = |01〉, we regard |01〉 as logical |0̄〉. We
regard |1〉x |0〉y as logical |1̄〉 similarly. Hence, we can write an arbitrary state of a qubit as

|ψ〉 = α|01〉 + β|10〉 = α|0̄〉 + β|1̄〉 for |α|2 + |β|2 = 1. (18)

We assume Eve puts a 50–50 beamsplitter halfway on the quantum channel to take away
photons. A state of a photon is a superposition of a state that it is on the side of Bob and a state
that it is on the side of Eve with amplitude 1/

√
2 each,

1√
2
|photon on the side of Bob〉 +

1√
2
|photon on the side of Eve〉. (19)

To examine whether the qubit of |ψ〉 has come on his own side or not, Bob prepares another
auxiliary photon and applies nonlinear interaction between the logical photon on mode x or y
and the auxiliary one. In the optical system of figure 5(c), if the photon counterDa detects the
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Figure 6. A quantum network for photon counting.

auxiliary photon, the logical photon is projected into the state that it is on the side of Bob. On
the other hand, Db’s detection projects the logical photon into the state that it is on the side of
Eve.

In figure 5(c), there are beamsplitters B which apply SU(2) transformations to logical
kets {|0̄〉, |1̄〉} as in figure 5(a), and Kerr-type devices K which induce nonlinear interactions
between two incoming photons as in figure 5(b). The device K shifts the phase of a
wavefunction by π only if a pair of photons comes into it. (Turchette et al succeed in shifting
the phase by # ∼ 16◦ [14].)

To clarify the operation of figure 5(c), we describe it by a network of quantum gates in
figure 6 [15]. Assuming the first and the second qubits are in an arbitrary entangled state |�〉Q,
we examine whether the first qubit exists or not by measuring an auxiliary qubit system A.
When we write the whole system as

|�〉Q|0〉A =
∑

i,j∈{0,1}
cij |i〉2|j〉1|0〉A (20)

|�〉Q|0〉A is transformed as follows in figure 6,

|�〉Q|0〉A =
∑
i

(ci0|i〉2|0〉1 + ci1|i〉2|1〉1)|0〉A

step 1−→
∑
i

(ci0|i〉2|1〉1|0〉A + ci1|i〉2|0〉1|1〉A)

step 2−→
∑
i

(ci0|i〉2|0〉1 + ci1|i〉2|1〉1)|1〉A

= |�〉Q|1〉A. (21)

Therefore, measuring an auxiliary system as shown in figures 5 and 6 for each channel,
Bob can examine whether all of the qubits have arrived or not.

4. Security against eavesdropping

It is difficult to consider all strategies Eve may take. In this section, we assume Eve to make
only the intercept/resend attack. Eve measures each transmitted qubit with a proper basis
independently and sends an alternative one according to the result of the measurement [4].
We pay attention to the following fact. Eve cannot extract information about |�〉Q at all
without getting the first password i of UQ

i |�〉Q, because the enciphered density operator is
in proportion to I for her. Therefore, Eve needs to keep her illegal action secret from Alice
and Bob during their authentication process so that Alice may disclose the first password
i. In this section, we estimate a probability that Alice and Bob fail to notice Eve’s illegal
act.
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For simplicity, we assume that |�〉Q is an arbitrary n-qubit product state for a while. At
the first encryption, Alice applies ∀UQ

i = σi1 ⊗· · ·⊗σin to |�〉Q = |ψ1〉⊗ · · ·⊗ |ψn〉. Hence,
U
Q
i |�〉Q is also a product state and we may treat each qubit independently.

     

Figure 7. Eve’s intercept/resend attack on the system S.

We write the kth qubit (∀k ∈ {1, . . . , n}) of UQ
i |�〉Q as |ψ〉Q = α|0〉Q + β|1〉Q and the

kth qubit of the signature as |a〉S (a ∈ {0, 1}). A state that Alice sends at t = 0 in figure 7 is
given by

αL1|0〉QL2|a〉S + βL1|1〉QL2|a ⊕ 1〉S. (22)

Bob measures only the system S at t = τ . If he gets |a〉S , Alice and Bob consider that the state
is transmitted correctly. Bob uses the following projection operator for the measurement:

'
QS
L1,L2

= (L1|0〉〈0|L†
1)Q ⊗ (L2|a〉〈a|L†

2)S + (L1|1〉〈1|L†
1)Q ⊗ (L2|a ⊕ 1〉〈a ⊕ 1|L†

2)S. (23)

Here, we assume Eve makes an attack only on the qubit of the system S as in figure 7
(U and V are arbitrary unitary transformations applied to one qubit). We write the dynamical
process of S as a completely positive linear map $ that represents Eve’s intercept/resend attack
on S [16]. Hence, the density operator ρS at t = 0 evolves to $(ρS) at t = τ . We can write
the state of QS at t = τ as

ρ
QS
L1,L2

(τ ) = |α|2(L1|0〉〈0|L†
1)Q ⊗ $(L2|a〉〈a|L†

2)S

+αβ∗(L1|0〉〈1|L†
1)Q ⊗ $(L2|a〉〈a ⊕ 1|L†

2)S

+βα∗(L1|1〉〈0|L†
1)Q ⊗ $(L2|a ⊕ 1〉〈a|L†

2)S

+|β|2(L1|1〉〈1|L†
1)Q ⊗ $(L2|a ⊕ 1〉〈a ⊕ 1|L†

2)S. (24)

We can write the probability P that Bob obtains |a〉S as

P = TrQS[ρQSL1,L2
(τ )'

QS
L1,L2

]

= |α|2〈a|L†
2$(L2|a〉〈a|L†

2)L2|a〉 + |β|2〈a ⊕ 1|L†
2$(L2|a ⊕ 1〉〈a ⊕ 1|L†

2)L2|a ⊕ 1〉. (25)

Seeing this, we find the following fact. Although the initial state |ψ〉Q of the system Q is
a superposition of |0〉 and |1〉, we may regard the state as a mixed state of |ψ〉Q = |0〉 and
|ψ〉Q = |1〉 with classical probability for evaluating P .

Therefore, the probability of Bob’s authentication is equal to an average of probabilities
that a network of quantum gates in figure 8 gives |φ〉S as an outcome from an incoming state
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Figure 8. Eve’s intercept/resend attack on one qubit.

|φ〉S = L2|0〉S for all of L2 ∈ L. Here, we evaluate P as follows. U and V are arbitrary
unitary transformations applied to one qubit. We assume U is defined as

U |ϕ0〉 = |0〉 U |ϕ1〉 = |1〉 (26)

where {|ϕ0〉, |ϕ1〉} is a certain orthonormal basis of H2. Then, we write |φ〉 = c0|ϕ0〉 + c1|ϕ1〉.
The state is transformed on the network of figure 8 as

|φ〉S |0〉E = (c0|ϕ0〉S + c1|ϕ1〉S)|0〉E
U−→ (c0|0〉S + c1|1〉S)|0〉E

C-NOT−→ c0|0〉S |0〉E + c1|1〉S |1〉E
V−→ c0V |0〉S |0〉E + c1V |1〉S |1〉E. (27)

Seeing (27), we find that Eve measures the enciphered qubit in the basis {|ϕ0〉, |ϕ1〉} and sends
a ket vector of a basis {V |0〉, V |1〉} according to the result of the measurement. Hence, we can
write the probability Pφ that Bob gets the correct signature for |φ〉S in spite of Eve’s illegal act
as

Pφ = |c0|2|〈φ|V |0〉|2 + |c1|2|〈φ|V |1〉|2. (28)

From now on, for simplicity, we write equations with density operators. Defining

ρφ = |φ〉〈φ| ρ̃0 = |ϕ0〉〈ϕ0| ρ̃1 = |ϕ1〉〈ϕ1|
ρ̃ ′

0 = V |0〉〈0|V † ρ̃ ′
1 = V |1〉〈1|V †

(29)

we can write (27) as

ρφ → $(ρφ) = (Tr ρφρ̃0)ρ̃
′
0 + (Tr ρφρ̃1)ρ̃

′
1 (30)

and (28) as

Pφ = Tr[$(ρφ)ρφ]. (31)

Four density operators L2|0〉〈0|L†
2 (L2 ∈ L), emitted as |φ〉S with equal probability, are

described as

ρ� = 1
2 (I + σz) ρ↔ = 1

2 (I − σz) ρ� = 1
2 (I + σx) ρ⊗ = 1

2 (I − σx). (32)

Then we define

ρ̃i = 1
2 [I + (−1)iX · σ] ρ̃ ′

j = 1
2 [I + (−1)jX ′ · σ] for i, j ∈ {0, 1} (33)

where X = (X, Y, Z) and X ′ = (X′, Y ′, Z′) are arbitrary three-component real vectors with
|X|2 = |X ′|2 = 1. Using the following formula:

Tr(I + A · σ)(I + B · σ) = 2(1 + A · B) (34)
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Figure 9. Eve’s intercept/resend attack on the system Q and S.

and averaging four kinds of Pφ , we estimate PB that Bob measures the correct signature in
spite of Eve’s illegal act at

PB = 1
4 (P� + P↔ + P� + P⊗) = 1

4 (2 +XX′ + ZZ′) � 3
4 . (35)

Therefore, the probability where Alice and Bob do not notice Eve make an attack by the
network of figure 8 is 3

4 or less. If Eve makes the intercept/resend attack on the system Q, we
can give a similar discussion. Consequently, the probability that Alice and Bob do not notice
Eve’s attacks on m qubits (either Q or S in each pair) is at most

(
3
4

)m
.

Next, we consider the case that Eve makes the intercept/resend attack on both qubits of a
pair QS independently in figure 9 (U1, U2, V1 and V2 are arbitrary unitary transformations).
Measuring ρQS transmitted from Alice, Eve sends the following density operator ρQS

′
to Bob,

ρQS
′ = $(ρQS) =

∑
i,j∈{0,1}

Tr(ρQSρ̃Q,i ρ̃S,j )ρ̃
′
Q,i ρ̃

′
S,j (36)

where

ρ̃Q,i = U
†
1 |i〉〈i|U1 = 1

2 [I + (−1)iX1 · σ]

ρ̃S,j = U
†
2 |j〉〈j |U2 = 1

2 [I + (−1)jX2 · σ]

ρ̃ ′
Q,i = V1|i〉〈i|V †

1 = 1
2 [I + (−1)iX3 · σ]

ρ̃ ′
S,j = V2|j〉〈j |V †

2 = 1
2 [I + (−1)jX4 · σ]

(37)

and |Xk|2 = 1 (k = 1, . . . , 4).
Here, we can assume |a〉S to be |0〉S without losing generality. We write a transmitted

state of Q as |ψ〉Q = α|0〉 + β|1〉. Because Alice has 16 kinds of ways to send the state for
L1, L2 ∈ L, Bob’s final probability for authentication is described as

PB = 1
16

∑
L1,L2∈L

Tr[$(ρQSL1,L2
)'

QS
L1,L2

]. (38)

Writing the density operator of the state αL1|0〉QL2|0〉S + βL1|1〉QL2|1〉S that Alice sends to
Bob as ρQSL1,L2

, we can describe its explicit form as

ρ
QS
L1,L2

= |α|2(L1|0〉〈0|L†
1)Q ⊗ (L2|0〉〈0|L†

2)S + αβ∗(L1|0〉〈1|L†
1)Q ⊗ (L2|0〉〈1|L†

2)S

+βα∗(L1|1〉〈0|L†
1)Q ⊗ (L2|1〉〈0|L†

2)S + |β|2(L1|1〉〈1|L†
1)Q ⊗ (L2|1〉〈1|L†

2)S.

(39)

The projection operator for Bob is given by

'
QS
L1,L2

= (L1|0〉〈0|L†
1)Q ⊗ (L2|0〉〈0|L†

2)S + (L1|1〉〈1|L†
1)Q ⊗ (L2|1〉〈1|L†

2)S. (40)
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Equation (38) is linear for ρQSL1,L2
. Therefore, we can divide (39) into terms for calculation.

First, we think about the first and fourth terms of (39). We write the first term as

/
QS
L1,L2

= (L1|0〉〈0|L†
1)Q ⊗ (L2|0〉〈0|L†

2)S. (41)

For example, if L1 = L2 = I, we obtain

/
QS
I,I = 1

4 (I + σz)Q ⊗ (I + σz)S (42)

'
QS
I,I = 1

4 [(I + σz)Q ⊗ (I + σz)S + (I − σz)Q ⊗ (I − σz)S] (43)

and

Tr[$(/QSI,I )'
QS
I,I ] = 1

2 (1 + Z1Z2Z3Z4). (44)

From similar calculations, we obtain

Tr[$(/QSL1,L2
)'

QS
L1,L2

] =




1
2 (1 + Z1Z2Z3Z4) for L1, L2 ∈ {I, σx}
1
2 (1 +X1X2X3X4) for L1, L2 ∈ {H,Hσx}
1
2 (1 + Z1X2Z3X4) for L1 ∈ {I, σx}, L2 ∈ {H,Hσx}
1
2 (1 +X1Z2X3Z4) for L1 ∈ {H,Hσx}, L2 ∈ {I, σx}.

(45)

Therefore, we obtain

1
16

∑
L1,L2

Tr[$(/QSL1,L2
)'

QS
L1,L2

] = 1
2 + 1

8 (X1X3 + Z1Z3)(X2X4 + Z2Z4). (46)

Next, we think about the second and third terms of (39). We write the second term as

#/
QS
L1,L2

= (L1|0〉〈1|L†
1)Q ⊗ (L2|0〉〈1|L†

2)S. (47)

For example, if L1 = L2 = I, we obtain

#/
QS
I,I = 1

4 (σx + iσy)Q ⊗ (σx + iσy)S

Tr[$(#/QSI,I )'
QS
I,I ] = 1

2 (X1 + iY1)(X2 + iY2)Z3Z4.
(48)

From similar calculations, we obtain

Tr[$(#/QSL1,L2
)'

QS
L1,L2

]

ε = 1 ε = −1

=




1
2 (X1 + iεY1)(X2 + iεY2)Z3Z4

− 1
2 (X1 + iεY1)(X2 − iεY2)Z3Z4

1
2 (Z1 − iεY1)(Z2 − iεY2)X3X4

− 1
2 (Z1 − iεY1)(Z2 + iεY2)X3X4

1
2 (X1 + iεY1)(Z2 − iεY2)Z3X4

− 1
2 (X1 + iεY1)(Z2 + iεY2)Z3X4

1
2 (Z1 − iεY1)(X2 + iεY2)X3Z4

− 1
2 (Z1 − iεY1)(X2 − iεY2)X3Z4

(L1, L2) = (I, I)

(I, σx)

(H,H)

(H,Hσx)

(I, H)

(I, Hσx)

(H, I)

(H, σx)

(σx, σx)

(σx, I)

(Hσx,Hσx)

(Hσx,H)

(σx,Hσx)

(σx,H)

(Hσx, σx)

(Hσx, I).

(49)
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Consequently, we obtain

1
16

∑
L1,L2

Tr[$(#/QSL1,L2
)'

QS
L1,L2

] = − 1
8Y1Y2(Z3 −X3)(Z4 −X4). (50)

Finally, obtaining

PB = 1
2 + 1

8 (X1X3 + Z1Z3)(X2X4 + Z2Z4)− 1
8 (αβ

∗ + α∗β)Y1Y2(Z3 −X3)(Z4 −X4) (51)

we can show PB � 3
4 (see appendix A). Therefore, if |�〉Q is an n-qubit product state and if

Eve makes the intercept/resend attack on both qubits of a pairQS independently as in figure 9,
the probability that Eve’s illegal acts cannot be found is equal to 3

4 or less per qubit.
In particular, if the transmitted information is classical, |�〉Q is a product state of |0〉

and |1〉. All of the 2n qubits transmitted are in states chosen from four ket vectors of two
conjugate bases at random. If we regard a as a key of an n-bit random string and |�〉Q as
an n-bit enciphered classical message, our method is equivalent to the one-time pad method
with BB84. Assuming Eve makes attacks on m pairs of qubits in QS, we can estimate the
probability of Eve’s success in eavesdropping at

(
3
4

)m
or less.

Then, we consider the case where |�〉Q is an arbitrary entangled state of n qubits. The
enciphered state of |�〉Q with UQ

i is also entangled and it is given by (14).
First, we consider that Eve makes the intercept/resend attack on either one in a pair of

qubits of the system Q and S as in figure 7. If Eve makes this attack on m pairs out of n pairs
of the system QS, we can regard the transmission as sending an ensemble of product states,
where each qubit is |0〉 or |1〉, with classical probabilities, such as (25). We can think in a
similar way before and conclude that the probability that Eve’s illegal act cannot be found is(

3
4

)m
or less.

Next, we consider the case where Eve makes the attack on both qubits of a pair on the
entangled system QS as in figure 9. If Eve makes this attack on m pairs out of n pairs, we
can write the probability that Eve is not found as an equation which is similar to (51) and it is
estimated as

(
3
4

)m
or less (see appendix B).

5. Privacy amplification process

From the previous discussion, we obtain the following results. If an arbitrary quantum state
is enciphered by our method, the probability that Alice and Bob do not notice Eve is at most
3
4 per qubit. (Both product and entangled states are available. We assume that Eve always
makes eavesdropping with the intercept/resend attack.) Hence, if Eve makes attacks on m
enciphered pairs, her success probability is given by

(
3
4

)m
and it decreases exponentially

against m.
However, there is a problem. In our method, if Eve replaces a pair of enciphered qubits

with a pair of random ones, Alice and Bob do not notice her illegal act with a probability of
1
2 . In this case, they disclose passwords and Eve obtains one qubit of original information
with fidelity 1. It is important that Eve gets a correct qubit and she knows that she obtains the
correct one.

Such a problem can also occur in BB84. It is possible that Alice and Bob share the same
random binary string and Eve knows a few bits of it exactly. To overcome this problem, for
example, Alice and Bob can choose some bits at random from the shared binary string and
make a new bit from a summation of them with modulo 2 [4]. If they repeat this process and
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create a new binary string that is shorter than the original one, Eve’s expected information
decreases to 0 in some asymptotic limit. Such a technique is called privacy amplification.

On the other hand, in our protocol, Eve’s success probability for eavesdropping on
one qubit cannot always reach 0. To decrease it to 0 asymptotically, Alice and Bob apply
our protocol over and over again. To make the discussion simple, we consider encryption of
one qubit of quantum information for a while.

Preparing an arbitrary one-qubit state |ψ1〉 and a one-qubit signature |a1〉 (∀a1 ∈ {0, 1}),
Alice applies our protocol to |ψ1〉|a1〉 and generates an entangled two-qubit state |ψ2〉. Then,
she prepares other qubits |a2〉|a3〉 for a signature, and enciphers |ψ2〉|a2〉|a3〉 again. She obtains
a four-qubit state |ψ3〉.

If Eve wants to obtain quantum information of |ψ1〉 with fidelity 1, she has to interact
with all four qubits of |ψ3〉. For example, if Eve replaces |ψ3〉 with four random qubits,
Alice and Bob notice her illegal act with probability of

(
1
2

)3 = 1
8 , because they carry out the

authentication process with |a1〉, |a2〉 and |a3〉.
If Alice enciphers |ψ1〉 for n times, the nth encryption needs 2n−1 signature qubits. If Eve

makes attacks on all enciphered qubits of |ψn+1〉, the probability that Alice and Bob do not
notice her act is

(
3
4

)N/2
at most, where N = 2n is the number of all enciphered qubits. (The

probability 3
4 comes from the fact that Alice enciphers the state with rectilinear and circular

bases at random, and it does not depend on |ψn〉.) Hence, Eve’s probability of success that
she obtains |ψ1〉 with fidelity of 1 decreases exponentially against the number of qubits, and
reaches 0 in the limit of N → ∞.

Another method is as follows. Alice and Bob share a random binary string beforehand
as the first password (subscripts of Pauli matrices) in secrecy by BB84. Because they do not
need to disclose it, Eve can never obtain information on |ψ1〉 at all even in the case where they
do not notice Eve’s disturbance. In this method, the privacy amplification has to be done for
BB84 actually.

6. Discussion

To understand our method more clearly, we consider a simple one and compare it with ours.
For transmitting an n-qubit quantum state in secrecy, we can take the following method.
Enciphering an n-qubit state ρn as (13), Alice prepares another n qubits as check ones that are
given as {|0〉, |1〉} or {(1/√2)(|0〉 ± |1〉)} at random respectively. Then, Alice permutes all of
the 2n qubits at random and sends them to Bob.

Here, we assume Eve tries to eavesdrop on only one qubit of ρn. Because Eve does not
know which qubits are check ones, the probability that Alice and Bob fail to notice Eve’s
illegal act can be

(
1
2

)[
1 +

(
3
4

)] = 7
8 as maximum, in spite of 3

4 for our method. This is because
we use entanglement in our method.

Even if Eve prepares an arbitrary one-qubit state by herself in spite of taking away a
qubit from ρn, its expectation value of fidelity is equal to 1

2 . This shows that Eve’s success
probability of eavesdropping is always equal to 1

2 or more. In our method, if Eve interacts
with enciphered qubits, the probability of her success is equal to at most 3

4 per qubit (without
privacy amplification). It is similar to the BB84.

In this paper, the security against Eve’s attack using entanglement is not considered (for
example, the case where she uses a quantum computer for eavesdropping as in figure 10).
In figure 10, it is difficult to evaluate the upper bound of the probability that Bob measures
the signature correctly for arbitrary unitary transformations U1, U2, V1 and V2. For instance,
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Figure 10. Eve’s attack on the system QS by using entanglement.

assuming

U1 = U2 = V1 = V2 = U where U =
(

cos(π/8) sin(π/8)

sin(π/8) − cos(π/8)

)
(52)

and |�〉Q represents classical information (an n-qubit product state of |0〉 and |1〉), we obtain
PB = (

13
16

)
>
(

3
4

)
for figure 10(a) and PB = (

11
16

)
<
(

3
4

)
for figure 10(b). Eavesdropping with

U is equivalent to measuring and resending a qubit in the following basis:

|ϕi〉〈ϕi | = 1
2 [I + (−1)iX · σ] X =

(
1√
2
, 0,

1√
2

)
(53)

which is called the Breidbart basis [4]. For figure 10(a), PB may exceed 3
4 . But, the amount

of information Eve can extract in figure 10(a) seems to be less than the amount of information
she obtains by the intercept/resend attack on one qubit as in figure 7.

In our method, if Eve takes away qubits, Alice and Bob lose original information on them.
We mentioned in section 1 that the classical key distribution can be done using just

uncertainty, and entanglement is not essential for it [8, 9]. On the other hand, for transmitting
quantum states by quantum teleportation, entanglement plays an essential role [6]. Our method
uses both properties.

Recently, a method for transmitting classical binary data (not a classical random string)
in secrecy with a pair of entangled photons has been proposed [17]. It is characterized by the
following facts. First, Alice and Bob prepare two conjugate bases on H2

2 each for encoding
a message and measuring photons. Second, they use a two-dimensional subspace of H2

2 for
encoding a binary digit.
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Appendix A. The maximum value of PB for a product state |Ψ〉Q

Here, we show that PB defined in (51) never exceeds 3
4 .

Because of |α|2 + |β|2 = 1, we get −1 � αβ∗ + α∗β � 1. Hence, altering the signs of Xi
as Xi → −Xi (i = 1, . . . , 4), we can write the upper bound of PB as

PB � 1
2 + 1

8fmax (A1)
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where fmax is the maximum value of

f = (X1X3 + Z1Z3)(X2X4 + Z2Z4) + Y1Y2(X3 + Z3)(X4 + Z4) (A2)

with |Xi |2 = 1 and Xi, Yi, Zi � 0 for i = 1, . . . , 4.
Seeing (A2), we give another form of f as follows:

f = |A · B| (A3)

where

A = (X1X3 + Z1Z3, Y1(X3 + Z3)) (A4)

B = (X2X4 + Z2Z4, Y2(X4 + Z4)). (A5)

(We pay attention to the fact that A and B are two-component real vectors.) From the Cauchy–
Schwarz inequality, we obtain

f � |A||B|. (A6)

Therefore, by estimating the maximum values of |A| and |B|, we derive the upper bound of
f .

We can write |A|2 in the following form:

|A|2 = (1 − Z2
1)X

2
3 + (1 −X2

1)Z
2
3 + 2(X1Z3)(Z1X3) + 2Y 2

1 (X3Z3). (A7)

On the other hand, from the arithmetic–geometric inequality, we obtain

(X1Z3)(Z1X3) � 1
2 [(X1Z3)

2 + (Z1X3)
2]

X3Z3 � 1
2 (X

2
3 + Z2

3).
(A8)

Therefore, we obtain

|A|2 � (1 + Y 2
1 )(X

2
3 + Z2

3) � 1 + Y 2
1 � 2. (A9)

We obtain |A| �
√

2. In a similar way, we obtain |B| �
√

2. From these results, we can
conclude that f � 2 and fmax = 2.

Appendix B. The maximum value of PB for an entangled state |Ψ〉Q

We estimate the probability that Eve’s illegal act cannot be found in the case where she makes
the intercept/resend attack on m pairs of qubits on the system QS for an arbitrary entangled
|�〉Q of n qubits.

For simplicity, we assume |�〉Q to be an arbitrary entangled state of a two-qubit system
qq ′ at first,

|�〉Q =
∑

i,j∈{0,1}
cij |i〉q ⊗ |j〉q ′ ∈ ∀H2

2. (B1)

Alice puts two qubits of the system S (= ss ′) for the signature on the qubits of the system
Q (= qq ′), respectively. Then, she makes entanglement between the systems Q and S with
C-NOT gates, applies L1, L2, L′

1, L′
2 ∈ L to four qubits q, s, q ′, s ′, respectively, and sends

them to Bob (see figure 7). Eve makes the intercept/resend attacks on the systems q, s, q ′, s ′

respectively as shown in figure 9. We can assume the initial states of qubits s, s ′ that represent
the signature to be |0〉s |0〉s ′ without losing generality.
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Writing the state sent by Alice as∑
i,j∈{0,1}

cijL1|i〉qL2|i〉s ⊗ L′
1|j〉q ′L′

2|j〉s ′ (B2)

we can describe the density operator explicitly as

ρ
QS

L1L2L
′
1L

′
2
= (L1L2L

′
1L

′
2)

∑
i,j∈{0,1}

[|cij |2(|i〉〈i|q ⊗ |i〉〈i|s)⊗ (|j〉〈j |q ′ ⊗ |j〉〈j |s ′)

+cij c
∗
ij̄
(|i〉〈i|q ⊗ |i〉〈i|s)⊗ (|j〉〈j̄ |q ′ ⊗ |j〉〈j̄ |s ′)

+cij c
∗
īj
(|i〉〈ī|q ⊗ |i〉〈ī|s)⊗ (|j〉〈j |q ′ ⊗ |j〉〈j |s ′)

+cij c
∗
ī j̄
(|i〉〈ī|q ⊗ |i〉〈ī|s)⊗ (|j〉〈j̄ |q ′ ⊗ |j〉〈j̄ |s ′)](L1L2L

′
1L

′
2)

† (B3)

where ī = i + 1 (mod 2).
Eavesdropping on the state ρQS

L1L2L
′
1L

′
2
, Eve transforms it to the following state:

$(ρQS
L1L2L

′
1L

′
2
) =

∑
i,j,k,l∈{0,1}

Tr(ρQS
L1L2L

′
1L

′
2
ρ̃q,i ρ̃s,j ρ̃q ′,kρ̃s ′,l)ρ̃

′
q,i ρ̃

′
s,j ρ̃

′
q ′,kρ̃

′
s ′,l (B4)

where

ρ̃q,i = 1
2 [I + (−1)iX1 · σ], ρ̃s,j = 1

2 [I + (−1)jX2 · σ]

ρ̃ ′
q,i = 1

2 [I + (−1)iX3 · σ], ρ̃ ′
s,j = 1

2 [I + (−1)jX4 · σ]

ρ̃q ′,k = 1
2 [I + (−1)kX ′

1 · σ], ρ̃s ′,l = 1
2 [I + (−1)lX ′

2 · σ]

ρ̃ ′
q ′,k = 1

2 [I + (−1)kX ′
3 · σ], ρ̃ ′

s ′,l = 1
2 [I + (−1)lX ′

4 · σ]

(B5)

and |Xk|2 = |X ′
k|2 = 1 (k = 1, . . . , 4). Bob measures it with the projection operator,

'
QS

L1L2L
′
1L

′
2
= (L1L2)(|0〉〈0|q ⊗ |0〉〈0|s + |1〉〈1|q ⊗ |1〉〈1|s)(L1L2)

†

⊗(L′
1L

′
2)(|0〉〈0|q ′ ⊗ |0〉〈0|s ′ + |1〉〈1|q ′ ⊗ |1〉〈1|s ′)(L′

1L
′
2)

†. (B6)

The probability that Bob measures the correct signature is given by

PB = (
1

16

)2 ∑
L1,L2∈L

∑
L′

1,L
′
2∈L

Tr
[
$(ρQS

L1L2L
′
1L

′
2
)'

QS

L1L2L
′
1L

′
2

]

= [
1
2 + 1

8 (X1X3 + Z1Z3)(X2X4 + Z2Z4)
][

1
2 + 1

8 (X
′
1X

′
3 + Z′

1Z
′
3)(X

′
2X

′
4 + Z′

2Z
′
4)
]

+
∑

i,j∈{0,1}

{
cij c

∗
ij̄

[
1
2 + 1

8 (X1X3 + Z1Z3)(X2X4 + Z2Z4)
]

×[− 1
8Y

′
1Y

′
2(Z

′
3 −X′

3)(Z
′
4 −X′

4)
]

+cij c
∗
īj

[− 1
8Y1Y2(Z3 −X3)(Z4 −X4)

][
1
2 + 1

8 (X
′
1X

′
3 + Z′

1Z
′
3)(X

′
2X

′
4 + Z′

2Z
′
4)
]

+cij c
∗
ī j̄

[− 1
8Y1Y2(Z3 −X3)(Z4 −X4)

][− 1
8Y

′
1Y

′
2(Z

′
3 −X′

3)(Z
′
4 −X′

4)
]}
. (B7)

From
∑

i,j∈{0,1} |cij |2 = 1, we obtain |∑i,j∈{0,1} cij c
∗
ij̄

| � 1, |∑i,j∈{0,1} cij c
∗
īj

| � 1 and

|∑i,j∈{0,1} cij c
∗
ī j̄

| � 1. Therefore, using the result obtained in appendix A, we can conclude

PB �
(

1
2 + 1

8fmax
)2 = (

3
4

)2
. (B8)

(We pay attention to a fact that each term of PB can be gathered with a binomial coefficient.)
When Eve attacks on m pairs out of enciphered qubits generated from an arbitrary n-qubit
entangled state |�〉Q, we obtain PB �

(
3
4

)m
.
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[6] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895–9
[7] Bouwmeester D, Pan J-W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575–9

Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706–9
[8] Ekert A K 1991 Phys. Rev. Lett. 67 661–3
[9] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557–9

[10] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76
722–5

Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818–21
Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824–51

[11] Boykin P O and Roychowdhury V 2000 Optimal encryption of quantum bits Los Alamos Preprint quant-
ph/0003059

Mosca M, Tapp A and de Wolf R 2000 Private quantum channels and the cost of randomizing quantum
information Los Alamos Preprint quant-ph/0003101

[12] Feynman R P 1996 Feynman Lectures on Computation (Reading, MA: Addison-Wesley)
Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J and Weinfurter H

1995 Phys. Rev. A 52 3457–67
[13] Chuang I L and Yamamoto Y 1995 Phys. Rev. A 52 3489–96
[14] Turchette Q A, Hood C J, Lange W, Mabuchi H and Kimble J 1995 Phys. Rev. Lett. 75 4710–3
[15] Gottesman D 1997 Stabilizer codes and quantum error correction PhD Thesis California Institute of Technology

Los Alamos Preprint quant-ph/9705052
[16] Schumacher B 1996 Phys. Rev. A 54 2614–28

Fujiwara A and Algoet P 1999 Phys. Rev. A 59 3290–4
[17] Shimizu K and Imoto N 1999 Phys. Rev. A 60 157–66


